Indian Science Technology and Engineering facilities Map
Supplier Map
Service Map


Publication Details

Indian Institute of Technology (IIT) Patna 
Sunil Kumar, Sweety Supriya and M. Kar 
Corresponding Authors:
Manoranjan Kar 
DOI #: 
Correlation between temperature dependent dielectric and DC resistivity of Cr substituted barium hexaferrite 
Mater. Res. Express 
dielectric and DC resistivity  
The chromium substituted barium hexaferrite (BaFe12O19) crystallize to the hexagonal symmetry (P63/mmc space group), which has been studied by employing the XRD technique. The XRD analysis is supported by the Raman spectra and, microstructural analysis has been carried out by the FESEM (field emission scanning electron microscope) technique. Average particle size is found to be around 85 nm. Two peaks are observed in the temperature versus dielectric constant plots and, these two transition temperatures are identified as T d and T m. The temperature T d is due to dipole relaxation, whereas T m is assigned as dielectric phase transition. Both T d and T m increase with the increase in frequency. However, the former one (i.e. T d) increases more rapidly compare to that of later one (i.e. T m). Both the temperature (T d and T m) are also well identified in the temperature dependent DC resistivity. All the samples exhibit the negative temperature coefficient of resistance (NTCR) behavior, which reveals the semiconducting behavior of the material. The Mott VRH model could explain the DC electrical conductivity. Both dielectric constant and DC resistivity is well correlated with each other to explain the transport properties in Cr3+ substituted barium hexaferrite 
Entered by:
Venkata Dantham on 2020-08-02 
I-Mitra(आई-मित्र) Welcomes You..
It has always been the basic tenet of the Government of India, in generously funding R&D efforts at academic institutions over the years, that facilities established through such support be made available to those needing them and qualified to make use of them for their own research work

However, this was never easy or straightforward for, among other reasons, there was no ready source of information of what facility was available and where. Thanks to the Web, it is much easier today to have a national and regional “inventory of resources”, so as to match users with the resources they need, and to do all this in an efficient and transparent manner.

This can lead to a leap in R&D productivity and greatly enhance the effectiveness of public investment. This is the motivation behind I-STEM.
read less <<
Visitor Hit Counter
Hosted at Indian Institute of Science
Copyright © 2020 I-STEM. All rights reserved.
Audited by: STQC Bengaluru.