Indian Science Technology and Engineering facilities Map
Supplier Map
Service Map

Publications

Publication Details

Applicant:
Central University of Tamil Nadu 
Author:
E. Shinyjoy, L. Kavitha, D. Bhagya Mathi, K. Venkata Saravanan, S. Kannan and D. Gopi 
Corresponding Authors:
D. Gopi 
DOI #:
DOI: 10.1021/acsami.6b13058 
Title:
Carbon Nanofiber/Polycaprolactone/Mineralized Hydroxyapatite Nanofibrous Scaffolds for Potential Orthopedic Applications 
Journal:
ACS Applied Materials & Interfaces 
Year:
2017 
Volume:
22 
Page:
6342-6355 
Keywords:
CNF; biodegradable polymers, bone-implant applications, hydroxyapatite, nanofibrous scaffold. 
Abstract:
Hydroxyapatite (Ca10 (PO4)6(OH)2, HAP), a multimineral substituted calcium phosphate is one of the most substantial bone mineral component that has been widely used as bone replacement materials because of its bioactive and biocompatible properties. However, the use of HAP as bone implants is restricted due to its brittle nature and poor mechanical properties. To overcome this defect and to generate suitable bone implant material, HAP is combined with biodegradable polymer (polycaprolactone, PCL). To enhance the mechanical property of the composite, carbon nanofibers (CNF) is incorporated to the composite, which has long been considered for hard and soft tissue implant due to its exceptional mechanical and structural properties. It is well-known that nanofibrous scaffold are the most-prominent material for the bone reconstruction. We have developed a new remarkable CNF/PCL/mineralized hydroxyapatite (M-HAP) nanofibrous scaffolds on titanium (Ti). The as-developed coatings were characterized by various techniques. The results indicate the formation and homogeneous distribution of components in the nanofibrous scaffolds. Incorporation of CNF into the PCL/M-HAP composite significantly improves the adhesion strength and elastic modulus of the scaffolds. Furthermore, the responses of human osteosarcoma (HOS MG63) cells cultured onto the scaffolds demonstrate that the viability of cells were considerably high for CNF-incorporated PCL/M-HAP than for PCL/M-HAP. In vivo analysis show the presence of soft fibrous tissue growth without any significant inflammatory signs, which suggests that incorporated CNF did not counteract the favorable biological roles of HAP. For load-bearing applications, research in various bone models is needed to substantiate the clinical availability. Thus, from the obtained results, we suggest that CNF/PCL/M-HAP nanofibrous scaffolds can be considered as potential candidates for orthopedic applications. 
Entered by:
Kavitha Louis on 2020-09-03 
 
I-Mitra(आई-मित्र) Welcomes You..
THE VISION
THE MISSION
ABOUT I-STEM
It has always been the basic tenet of the Government of India, in generously funding R&D efforts at academic institutions over the years, that facilities established through such support be made available to those needing them and qualified to make use of them for their own research work
read more >>

However, this was never easy or straightforward for, among other reasons, there was no ready source of information of what facility was available and where. Thanks to the Web, it is much easier today to have a national and regional “inventory of resources”, so as to match users with the resources they need, and to do all this in an efficient and transparent manner.

This can lead to a leap in R&D productivity and greatly enhance the effectiveness of public investment. This is the motivation behind I-STEM.
read less <<
Visitor Hit Counter
Hosted at Indian Institute of Science
Copyright © 2020 I-STEM. All rights reserved.
Audited by: STQC Bengaluru.