Indian Science Technology and Engineering facilities Map
Supplier Map
Service Map

Publications

Publication Details

Applicant:
Central University of Tamil Nadu 
Author:
Mehjabeen Naushad # 1 , Siva Sundara Kumar Durairajan # 1 , Amal Kanti Bera 2 , Sanjib Senapati 2 , Min Li 3 
Corresponding Authors:
Siva Sundara Kumar Durairajan, Min Li  
DOI #:
10.1055/a-1019-9819 
Title:
Natural Compounds with Anti-BACE1 Activity as Promising Therapeutic Drugs for Treating Alzheimerʼs Disease 
Journal:
Planta Medica 
Year:
2019 
Volume:
85 
Page:
1316-1325 
Keywords:
Alzheimerʼs disease - BACE1 - BACE1 inhibitors - flavonoids - phenolics - alkaloids - terpenes 
Abstract:
Alzheimerʼs disease is a neurodegenerative disease that leads to irreversible neuronal damage. Senile plaques, composed of amyloid beta peptide, is the principal abnormal characteristic of the disease. Among the factors involved, the secretase enzymes, namely, α secretase, beta-site amyloid precursor protein-cleaving enzyme, β secretase, and γ secretase, hold consequential importance. Beta-site amyloid precursor protein-cleaving enzyme 1 is considered to be the rate-limiting factor in the production of amyloid beta peptide. Research supporting the concept of inhibition of beta-site amyloid precursor protein-cleaving enzyme activity as one of the effective therapeutic targets in the mitigation of Alzheimerʼs disease is well accepted. The identification of natural compounds, such as β-amyloid precursor protein-selective beta-site amyloid precursor protein-cleaving enzyme inhibitors, and the idea of compartmentalisation of the beta-site amyloid precursor protein-cleaving enzyme 1 action have caused a dire need to closely examine the natural compounds and their effectiveness in the disease mitigation. Many natural compounds have been reported to effectively modulate beta-site amyloid precursor protein-cleaving enzyme 1. At lower doses, compounds like 2,2′,4′-trihydroxychalcone acid, quercetin, and myricetin have been shown to effectively reduce beta-site amyloid precursor protein-cleaving enzyme 1 activity. The currently used five drugs that are marketed and used for the management of Alzheimerʼs disease have an increased risk of toxicity and restricted therapeutic efficiency, hence, the search for new anti-Alzheimerʼs disease drugs is of primary concern. A variety of natural compounds having pure pharmacological moieties showing multitargeting activity and others exhibiting specific beta-site amyloid precursor protein-cleaving enzyme 1 inhibition as discussed below have superior biosafety. Many of these compounds, which are isolated from medicinal herbs and marine flora, have been long used for the treatment of various ailments since ancient times in the Chinese and Ayurvedic medical systems. The aim of this article is to review the available data on the selected natural compounds, giving emphasis to the inhibition of beta-site amyloid precursor protein-cleaving enzyme 1 activity as a mode of Alzheimerʼs disease treatment. 
Entered by:
Siva Sundara Kumar Durairajan on 2020-09-04 
 
I-Mitra(आई-मित्र) Welcomes You..
THE VISION
THE MISSION
ABOUT I-STEM
It has always been the basic tenet of the Government of India, in generously funding R&D efforts at academic institutions over the years, that facilities established through such support be made available to those needing them and qualified to make use of them for their own research work
read more >>

However, this was never easy or straightforward for, among other reasons, there was no ready source of information of what facility was available and where. Thanks to the Web, it is much easier today to have a national and regional “inventory of resources”, so as to match users with the resources they need, and to do all this in an efficient and transparent manner.

This can lead to a leap in R&D productivity and greatly enhance the effectiveness of public investment. This is the motivation behind I-STEM.
read less <<
Visitor Hit Counter
Hosted at Indian Institute of Science
Copyright © 2020 I-STEM. All rights reserved.
Audited by: STQC Bengaluru.