Indian Science Technology and Engineering facilities Map
Supplier Map
Service Map


Publication Details

Central University of Tamil Nadu 
Dinakar Challabathula 
Corresponding Authors:
Dorothea Bartels 
DOI #:
Protection of photosynthesis in desiccation-tolerant resurrection plants 
Journal of Plant Physiology 
Antioxidants; Desiccation; Desiccation-tolerant plants; LEA (late embryogenesis abundant) proteins; Photosynthesis; Reactive oxygen species (ROS). 
Inhibition of photosynthesis is a central, primary response that is observed in both desiccation-tolerant and desiccation-sensitive plants affected by drought stress. Decreased photosynthesis during drought stress can either be due to the limitation of carbon dioxide entry through the stomata and the mesophyll cells, due to increased oxidative stress or due to decreased activity of photosynthetic enzymes. Although the photosynthetic rates decrease in both desiccation-tolerant and sensitive plants during drought, the remarkable difference lies in the complete recovery of photosynthesis after rehydration in desiccation-tolerant plants. Desiccation of sensitive plants leads to irreparable damages of the photosynthetic membranes, in contrast the photosynthetic apparatus is deactivated during desiccation in desiccation-tolerant plants. Desiccation-tolerant plants employ different strategies to protect and/or maintain the structural integrity of the photosynthetic apparatus to reactivate photosynthesis upon water availability. Two major mechanisms are distinguished. Homoiochlorophyllous desiccation-tolerant plants preserve chlorophyll and thylakoid membranes and require active protection mechanisms, while poikilochlorophyllous plants degrade chlorophyll in a regulated manner but then require de novo synthesis during rehydration. Desiccation-tolerant plants, particularly homoiochlorophyllous plants, employ conserved and novel antioxidant enzymes/metabolites to minimize the oxidative damage and to protect the photosynthetic machinery. De novo synthesized, stress-induced proteins in combination with antioxidants are localized in chloroplasts and are important components of the protective network. Genome sequence informations provide some clues on selection of genes involved in protecting photosynthetic structures; e.g. ELIP genes (early light inducible proteins) are enriched in the genomes and more abundantly expressed in homoiochlorophyllous desiccation-tolerant plants. This review focuses on the mechanisms that operate in the desiccation-tolerant plants to protect the photosynthetic apparatus during desiccation. 
Entered by:
DINAKAR Challabathula on 2020-09-04 
I-Mitra(आई-मित्र) Welcomes You..
It has always been the basic tenet of the Government of India, in generously funding R&D efforts at academic institutions over the years, that facilities established through such support be made available to those needing them and qualified to make use of them for their own research work

However, this was never easy or straightforward for, among other reasons, there was no ready source of information of what facility was available and where. Thanks to the Web, it is much easier today to have a national and regional “inventory of resources”, so as to match users with the resources they need, and to do all this in an efficient and transparent manner.

This can lead to a leap in R&D productivity and greatly enhance the effectiveness of public investment. This is the motivation behind I-STEM.
read less <<
Visitor Hit Counter
Hosted at Indian Institute of Science
Copyright © 2020 I-STEM. All rights reserved.
Audited by: STQC Bengaluru.