Indian Science Technology and Engineering facilities Map
Supplier Map
Service Map


Publication Details

Central University of Tamil Nadu 
Challabathula Dinakar 
Corresponding Authors:
Kollipara Padmasree 
DOI #:
Alternative Oxidase Pathway Optimizes Photosynthesis During Osmotic and Temperature Stress by Regulating Cellular ROS, Malate Valve and Antioxidative Systems 
Frontiers in Plant Science 
alternative oxidase; cytochrome oxidase; photosynthesis; reactive oxygen species; respiration; salicylhydroxamic acid. 
The present study reveals the importance of alternative oxidase (AOX) pathway in optimizing photosynthesis under osmotic and temperature stress conditions in the mesophyll protoplasts of Pisum sativum. The responses of photosynthesis and respiration were monitored at saturating light intensity of 1000 μmoles m(-2) s(-1) at 25°C under a range of sorbitol concentrations from 0.4 to 1.0 M to induce hyper-osmotic stress and by varying the temperature of the thermo-jacketed pre-incubation chamber from 25 to 10°C to impose sub-optimal temperature stress. Compared to controls (0.4 M sorbitol and 25°C), the mesophyll protoplasts showed remarkable decrease in NaHCO3-dependent O2 evolution (indicator of photosynthetic carbon assimilation), under both hyper-osmotic (1.0 M sorbitol) and sub-optimal temperature stress conditions (10°C), while the decrease in rates of respiratory O2 uptake were marginal. The capacity of AOX pathway increased significantly in parallel to increase in intracellular pyruvate and reactive oxygen species (ROS) levels under both hyper-osmotic stress and sub-optimal temperature stress under the background of saturating light. The ratio of redox couple (Malate/OAA) related to malate valve increased in contrast to the ratio of redox couple (GSH/GSSG) related to antioxidative system during hyper-osmotic stress. Further, the ratio of GSH/GSSG decreased in the presence of sub-optimal temperature, while the ratio of Malate/OAA showed no visible changes. Also, the redox ratios of pyridine nucleotides increased under hyper-osmotic (NADH/NAD) and sub-optimal temperature (NADPH/NADP) stresses, respectively. However, upon restriction of AOX pathway by using salicylhydroxamic acid (SHAM), the observed changes in NaHCO3-dependent O2 evolution, cellular ROS, redox ratios of Malate/OAA, NAD(P)H/NAD(P) and GSH/GSSG were further aggravated under stress conditions with concomitant modulations in NADP-MDH and antioxidant enzymes. Taken together, the results indicated the importance of AOX pathway in optimizing photosynthesis under both hyper-osmotic stress and sub-optimal temperatures. Regulation of ROS through redox couples related to malate valve and antioxidant system by AOX pathway to optimize photosynthesis under these stresses are discussed. 
Entered by:
DINAKAR Challabathula on 2020-09-04 
I-Mitra(आई-मित्र) Welcomes You..
It has always been the basic tenet of the Government of India, in generously funding R&D efforts at academic institutions over the years, that facilities established through such support be made available to those needing them and qualified to make use of them for their own research work

However, this was never easy or straightforward for, among other reasons, there was no ready source of information of what facility was available and where. Thanks to the Web, it is much easier today to have a national and regional “inventory of resources”, so as to match users with the resources they need, and to do all this in an efficient and transparent manner.

This can lead to a leap in R&D productivity and greatly enhance the effectiveness of public investment. This is the motivation behind I-STEM.
read less <<
Visitor Hit Counter
Hosted at Indian Institute of Science
Copyright © 2020 I-STEM. All rights reserved.
Audited by: STQC Bengaluru.