| | | | | | | |
                
Indian Science Technology and Engineering facilities Map
Supplier Map
Service Map










Publications

Publication Details

Applicant:
Central University of Tamil Nadu 
Author:
Kavya Bakka 
Corresponding Authors:
Dinakar Challabathula 
DOI #:
10.1016/j.plaphy.2020.05.022. 
Title:
Cytochrome oxidase and alternative oxidase pathways of mitochondrial electron transport chain are important for the photosynthetic performance of pea plants under salinity stress conditions 
Journal:
Plant Physiology and Biochemistry 
Year:
2020 
Volume:
154 
Page:
248 
Keywords:
Alternative oxidase; Antimycin A; Cytochrome c oxidase; Photosynthesis; ROS; Respiration; Salicylhydroxamic acid. 
Abstract:
The flexible plant mitochondrial electron transport chain with cytochrome c oxidase (COX) and alternative oxidase (AOX) pathways is known to be modulated by abiotic stress conditions. The effect of salinity stress on the mitochondrial electron transport chain and the importance of COX and AOX pathways for optimization of photosynthesis under salinity stress conditions is not clearly understood. In the current study, importance of COX and AOX pathways for photosynthetic performance of pea plants (Pisum sativum L. Pea Arkel cv) was analysed by using the mitochondrial electron transport chain inhibitors Antimycin A (AA) and salicylhydroxamic acid (SHAM) which restrict the electron flow through COX and AOX pathways respectively. Salinity stress resulted in decreased CO2 assimilation rates, leaf stomatal conductance, transpiration and leaf intercellular CO2 concentration in a stress dependent manner. Superimposition of leaves of salt stressed plants with AA and SHAM caused cellular H2O2 and O2- accumulation along with cell death. Additionally, aggravation in decrease of CO2 assimilation rates, leaf stomatal conductance, transpiration and leaf intercellular CO2 concentration upon superimposition with AA and SHAM during salinity stress suggests the importance of mitochondrial oxidative electron transport for photosynthesis. Increased expression of AOX1a and AOX2 transcripts along with AOX protein levels indicated up regulation of AOX pathway in leaves during salinity stress. Chlorophyll fluorescence measurements revealed enhanced damage to Photosystem (PS) II in the presence of AA and SHAM during salinity stress. Results suggested the beneficial role of COX and AOX pathways for optimal photosynthetic performance in pea leaves during salinity stress conditions. 
Entered by:
Kavya Bakka on 2020-09-04 
 
THE VISION
THE MISSION
ABOUT I-STEM
It has always been the basic tenet of the Government of India, in generously funding R&D efforts at academic institutions over the years, that facilities established through such support be made available to those needing them and qualified to make use of them for their own research work
read more >>

However, this was never easy or straightforward for, among other reasons, there was no ready source of information of what facility was available and where. Thanks to the Web, it is much easier today to have a national and regional “inventory of resources”, so as to match users with the resources they need, and to do all this in an efficient and transparent manner.

This can lead to a leap in R&D productivity and greatly enhance the effectiveness of public investment. This is the motivation behind I-STEM.
read less <<
Visitor Hit Counter
Toll Free Number : 1800 425 3281
Hosted at Indian Institute of Science
Copyright © 2019 I-STEM. All rights reserved    Audited by: STQC Bengaluru.